libwebp-compress/testCOut/signalsmith-stretch.h
2025-11-27 15:32:16 +08:00

1061 lines
34 KiB
C++

#ifndef SIGNALSMITH_STRETCH_H
#define SIGNALSMITH_STRETCH_H
#include "./signalsmith-linear/stft.h" // https://github.com/Signalsmith-Audio/linear
#include <vector>
#include <array>
#include <algorithm>
#include <functional>
#include <random>
#include <limits>
#include <type_traits>
namespace signalsmith { namespace stretch {
namespace _impl {
template<bool conjugateSecond=false, typename V>
static std::complex<V> mul(const std::complex<V> &a, const std::complex<V> &b) {
return conjugateSecond ? std::complex<V>{
b.real()*a.real() + b.imag()*a.imag(),
b.real()*a.imag() - b.imag()*a.real()
} : std::complex<V>{
a.real()*b.real() - a.imag()*b.imag(),
a.real()*b.imag() + a.imag()*b.real()
};
}
template<typename V>
static V norm(const std::complex<V> &a) {
V r = a.real(), i = a.imag();
return r*r + i*i;
}
}
template<typename Sample=float, class RandomEngine=void>
struct SignalsmithStretch {
static constexpr size_t version[3] = {1, 3, 2};
SignalsmithStretch() : randomEngine(std::random_device{}()) {}
SignalsmithStretch(long seed) : randomEngine(seed) {}
// The difference between the internal position (centre of a block) and the input samples you're supplying
int inputLatency() const {
return int(stft.analysisLatency());
}
int outputLatency() const {
return int(stft.synthesisLatency() + _splitComputation*stft.defaultInterval());
}
void reset() {
stft.reset(0.1);
stashedInput = stft.input;
stashedOutput = stft.output;
prevInputOffset = -1;
channelBands.assign(channelBands.size(), Band());
silenceCounter = 0;
didSeek = false;
blockProcess = {};
freqEstimateWeighted = freqEstimateWeight = 0;
}
// Configures using a default preset
void presetDefault(int nChannels, Sample sampleRate, bool splitComputation=false) {
configure(nChannels, sampleRate*0.12, sampleRate*0.03, splitComputation);
}
void presetCheaper(int nChannels, Sample sampleRate, bool splitComputation=true) {
configure(nChannels, sampleRate*0.1, sampleRate*0.04, splitComputation);
}
// Manual setup
void configure(int nChannels, int blockSamples, int intervalSamples, bool splitComputation=false) {
_splitComputation = splitComputation;
channels = nChannels;
stft.configure(channels, channels, blockSamples, intervalSamples + 1);
stft.setInterval(intervalSamples, stft.kaiser);
stft.reset(0.1);
stashedInput = stft.input;
stashedOutput = stft.output;
bands = int(stft.bands());
channelBands.assign(bands*channels, Band());
peaks.reserve(bands/2);
energy.resize(bands);
smoothedEnergy.resize(bands);
outputMap.resize(bands);
channelPredictions.resize(channels*bands);
blockProcess = {};
formantMetric.resize(bands + 2);
tmpProcessBuffer.resize(blockSamples + intervalSamples);
tmpPreRollBuffer.resize(outputLatency()*channels);
}
// For querying the existing config
int blockSamples() const {
return int(stft.blockSamples());
}
int intervalSamples() const {
return int(stft.defaultInterval());
}
bool splitComputation() const {
return _splitComputation;
}
/// Frequency multiplier, and optional tonality limit (as multiple of sample-rate)
void setTransposeFactor(Sample multiplier, Sample tonalityLimit=0) {
freqMultiplier = multiplier;
if (tonalityLimit > 0) {
freqTonalityLimit = tonalityLimit/std::sqrt(multiplier); // compromise between input and output limits
} else {
freqTonalityLimit = 1;
}
customFreqMap = nullptr;
}
void setTransposeSemitones(Sample semitones, Sample tonalityLimit=0) {
setTransposeFactor(std::pow(2, semitones/12), tonalityLimit);
}
// Sets a custom frequency map - should be monotonically increasing
void setFreqMap(std::function<Sample(Sample)> inputToOutput) {
customFreqMap = inputToOutput;
}
void setFormantFactor(Sample multiplier, bool compensatePitch=false) {
formantMultiplier = multiplier;
invFormantMultiplier = 1/multiplier;
formantCompensation = compensatePitch;
}
void setFormantSemitones(Sample semitones, bool compensatePitch=false) {
setFormantFactor(std::pow(2, semitones/12), compensatePitch);
}
// Rough guesstimate of the fundamental frequency, used for formant analysis. 0 means attempting to detect the pitch
void setFormantBase(Sample baseFreq=0) {
formantBaseFreq = baseFreq;
}
// Provide previous input ("pre-roll") to smoothly change the input location without interrupting the output. This doesn't do any calculation, just copies intput to a buffer.
// You should ideally feed it `seekLength()` frames of input, unless it's directly after a `.reset()` (in which case `.outputSeek()` might be a better choice)
template<class Inputs>
void seek(Inputs &&inputs, int inputSamples, double playbackRate) {
tmpProcessBuffer.resize(0);
tmpProcessBuffer.resize(stft.blockSamples() + stft.defaultInterval());
int startIndex = std::max<int>(0, inputSamples - int(tmpProcessBuffer.size())); // start position in input
int padStart = int(tmpProcessBuffer.size() + startIndex) - inputSamples; // start position in tmpProcessBuffer
Sample totalEnergy = 0;
for (int c = 0; c < channels; ++c) {
auto &&inputChannel = inputs[c];
for (int i = startIndex; i < inputSamples; ++i) {
Sample s = inputChannel[i];
totalEnergy += s*s;
tmpProcessBuffer[i - startIndex + padStart] = s;
}
stft.writeInput(c, tmpProcessBuffer.size(), tmpProcessBuffer.data());
}
stft.moveInput(tmpProcessBuffer.size());
if (totalEnergy >= noiseFloor) {
silenceCounter = 0;
silenceFirst = true;
}
didSeek = true;
seekTimeFactor = (playbackRate*stft.defaultInterval() > 1) ? 1/playbackRate : stft.defaultInterval();
}
int seekLength() const {
return int(stft.blockSamples() + stft.defaultInterval());
}
// Moves the input position *and* pre-calculates some output, so that the next samples returned from `.process()` are aligned to the beginning of the sample.
// The time-stretch rate is inferred from `inputLength`, so use `.outputSeekLength()` to get a correct value for that.
template<class Inputs>
void outputSeek(Inputs &&inputs, int inputLength) {
// TODO: add fade-out parameter to avoid clicks, instead of doing a full reset
reset();
// Assume we've been handed enough surplus input to produce `outputLatency()` samples of pre-roll
int surplusInput = std::max<int>(inputLength - inputLatency(), 0);
Sample playbackRate = surplusInput/Sample(outputLatency());
// Move the input position to the start of the sound
int seekSamples = inputLength - surplusInput;
seek(inputs, seekSamples, playbackRate);
tmpPreRollBuffer.resize(outputLatency()*channels);
struct BufferOutput {
Sample *samples;
int length;
Sample * operator[](int c) {
return samples + c*length;
}
} preRollOutput{tmpPreRollBuffer.data(), outputLatency()};
// Use the surplus input to produce pre-roll output
OffsetIO<Inputs> offsetInput{inputs, seekSamples};
process(offsetInput, surplusInput, preRollOutput, preRollOutput.length);
// put the thing down, flip it and reverse it
for (auto &v : tmpPreRollBuffer) v = -v;
for (int c = 0; c < channels; ++c) {
std::reverse(preRollOutput[c], preRollOutput[c] + preRollOutput.length);
stft.addOutput(c, preRollOutput.length, preRollOutput[c]);
}
}
int outputSeekLength(Sample playbackRate) const {
return inputLatency() + playbackRate*outputLatency();
}
template<class Inputs, class Outputs>
void process(Inputs &&inputs, int inputSamples, Outputs &&outputs, int outputSamples) {
#ifdef SIGNALSMITH_STRETCH_PROFILE_PROCESS_START
SIGNALSMITH_STRETCH_PROFILE_PROCESS_START(inputSamples, outputSamples);
#endif
int prevCopiedInput = 0;
auto copyInput = [&](int toIndex){
int length = std::min<int>(int(stft.blockSamples() + stft.defaultInterval()), toIndex - prevCopiedInput);
tmpProcessBuffer.resize(length);
int offset = toIndex - length;
for (int c = 0; c < channels; ++c) {
auto &&inputBuffer = inputs[c];
for (int i = 0; i < length; ++i) {
tmpProcessBuffer[i] = inputBuffer[i + offset];
}
stft.writeInput(c, length, tmpProcessBuffer.data());
}
stft.moveInput(length);
prevCopiedInput = toIndex;
};
Sample totalEnergy = 0;
for (int c = 0; c < channels; ++c) {
auto &&inputChannel = inputs[c];
for (int i = 0; i < inputSamples; ++i) {
Sample s = inputChannel[i];
totalEnergy += s*s;
}
}
if (totalEnergy < noiseFloor) {
if (silenceCounter >= 2*stft.blockSamples()) {
if (silenceFirst) { // first block of silence processing
silenceFirst = false;
//stft.reset();
blockProcess = {};
for (auto &b : channelBands) {
b.input = b.prevInput = b.output = 0;
b.inputEnergy = 0;
}
}
if (inputSamples > 0) {
// copy from the input, wrapping around if needed
for (int outputIndex = 0; outputIndex < outputSamples; ++outputIndex) {
int inputIndex = outputIndex%inputSamples;
for (int c = 0; c < channels; ++c) {
outputs[c][outputIndex] = inputs[c][inputIndex];
}
}
} else {
for (int c = 0; c < channels; ++c) {
auto &&outputChannel = outputs[c];
for (int outputIndex = 0; outputIndex < outputSamples; ++outputIndex) {
outputChannel[outputIndex] = 0;
}
}
}
// Store input in history buffer
copyInput(inputSamples);
return;
} else {
silenceCounter += inputSamples;
}
} else {
silenceCounter = 0;
silenceFirst = true;
}
for (int outputIndex = 0; outputIndex < outputSamples; ++outputIndex) {
bool newBlock = blockProcess.samplesSinceLast >= stft.defaultInterval();
if (newBlock) {
blockProcess.step = 0;
blockProcess.steps = 0; // how many processing steps this block will have
blockProcess.samplesSinceLast = 0;
// Time to process a spectrum! Where should it come from in the input?
int inputOffset = std::round(outputIndex*Sample(inputSamples)/outputSamples);
int inputInterval = inputOffset - prevInputOffset;
prevInputOffset = inputOffset;
copyInput(inputOffset);
stashedInput = stft.input; // save the input state, since that's what we'll analyse later
if (_splitComputation) {
stashedOutput = stft.output; // save the current output, and read from it
stft.moveOutput(stft.defaultInterval()); // the actual input jumps forward in time by one interval, ready for the synthesis
}
blockProcess.newSpectrum = didSeek || (inputInterval > 0);
blockProcess.mappedFrequencies = customFreqMap || freqMultiplier != 1;
if (blockProcess.newSpectrum) {
// make sure the previous input is the correct distance in the past (give or take 1 sample)
blockProcess.reanalysePrev = didSeek || std::abs(inputInterval - int(stft.defaultInterval())) > 1;
if (blockProcess.reanalysePrev) blockProcess.steps += stft.analyseSteps() + 1;
// analyse a new input
blockProcess.steps += stft.analyseSteps() + 1;
}
blockProcess.processFormants = formantMultiplier != 1 || (formantCompensation && blockProcess.mappedFrequencies);
blockProcess.timeFactor = didSeek ? seekTimeFactor : stft.defaultInterval()/std::max<Sample>(1, inputInterval);
didSeek = false;
updateProcessSpectrumSteps();
blockProcess.steps += processSpectrumSteps;
blockProcess.steps += stft.synthesiseSteps() + 1;
}
size_t processToStep = newBlock ? blockProcess.steps : 0;
if (_splitComputation) {
Sample processRatio = Sample(blockProcess.samplesSinceLast + 1)/stft.defaultInterval();
processToStep = std::min<size_t>(blockProcess.steps, (blockProcess.steps + 0.999f)*processRatio);
}
while (blockProcess.step < processToStep) {
size_t step = blockProcess.step++;
#ifdef SIGNALSMITH_STRETCH_PROFILE_PROCESS_STEP
SIGNALSMITH_STRETCH_PROFILE_PROCESS_STEP(step, blockProcess.steps);
#endif
if (blockProcess.newSpectrum) {
if (blockProcess.reanalysePrev) {
// analyse past input
if (step < stft.analyseSteps()) {
stashedInput.swap(stft.input);
stft.analyseStep(step, stft.defaultInterval());
stashedInput.swap(stft.input);
continue;
}
step -= stft.analyseSteps();
if (step < 1) {
// Copy previous analysis to our band objects
for (int c = 0; c < channels; ++c) {
auto channelBands = bandsForChannel(c);
auto *spectrumBands = stft.spectrum(c);
for (int b = 0; b < bands; ++b) {
channelBands[b].prevInput = spectrumBands[b];
}
}
continue;
}
step -= 1;
}
// Analyse latest (stashed) input
if (step < stft.analyseSteps()) {
stashedInput.swap(stft.input);
stft.analyseStep(step);
stashedInput.swap(stft.input);
continue;
}
step -= stft.analyseSteps();
if (step < 1) {
// Copy analysed spectrum into our band objects
for (int c = 0; c < channels; ++c) {
auto channelBands = bandsForChannel(c);
auto *spectrumBands = stft.spectrum(c);
for (int b = 0; b < bands; ++b) {
channelBands[b].input = spectrumBands[b];
}
}
continue;
}
step -= 1;
}
if (step < processSpectrumSteps) {
processSpectrum(step);
continue;
}
step -= processSpectrumSteps;
if (step < 1) {
// Copy band objects into spectrum
for (int c = 0; c < channels; ++c) {
auto channelBands = bandsForChannel(c);
auto *spectrumBands = stft.spectrum(c);
for (int b = 0; b < bands; ++b) {
spectrumBands[b] = channelBands[b].output;
}
}
continue;
}
step -= 1;
if (step < stft.synthesiseSteps()) {
stft.synthesiseStep(step);
continue;
}
}
#ifdef SIGNALSMITH_STRETCH_PROFILE_PROCESS_ENDSTEP
SIGNALSMITH_STRETCH_PROFILE_PROCESS_ENDSTEP();
#endif
++blockProcess.samplesSinceLast;
if (_splitComputation) stashedOutput.swap(stft.output);
for (int c = 0; c < channels; ++c) {
auto &&outputChannel = outputs[c];
Sample v = 0;
stft.readOutput(c, 1, &v);
outputChannel[outputIndex] = v;
}
stft.moveOutput(1);
if (_splitComputation) stashedOutput.swap(stft.output);
}
copyInput(inputSamples);
prevInputOffset -= inputSamples;
#ifdef SIGNALSMITH_STRETCH_PROFILE_PROCESS_END
SIGNALSMITH_STRETCH_PROFILE_PROCESS_END();
#endif
}
// Read the remaining output, providing no further input. If `outputSamples` is more than one interval, it will compute additional blocks assuming a zero-valued input
template<class Outputs>
void flush(Outputs &&outputs, int outputSamples, Sample playbackRate=0) {
struct Zeros {
struct Channel {
Sample operator[](int) {
return 0;
}
};
Channel operator[](int) {
return {};
}
} zeros;
// If we're asked for more than an interval of extra output, then zero-pad the input
int outputBlock = std::max<int>(0, outputSamples - stft.defaultInterval());
if (outputBlock > 0) process(zeros, outputBlock*playbackRate, outputs, outputBlock);
int tailSamples = outputSamples - outputBlock; // at most one interval
tmpProcessBuffer.resize(tailSamples);
stft.finishOutput(1);
for (int c = 0; c < channels; ++c) {
stft.readOutput(c, tailSamples, tmpProcessBuffer.data());
auto &&outputChannel = outputs[c];
for (int i = 0; i < tailSamples; ++i) {
outputChannel[outputBlock + i] = tmpProcessBuffer[i];
}
stft.readOutput(c, tailSamples, tailSamples, tmpProcessBuffer.data());
for (int i = 0; i < tailSamples; ++i) {
outputChannel[outputBlock + tailSamples - 1 - i] -= tmpProcessBuffer[i];
}
}
stft.reset(0.1f);
// Reset the phase-vocoder stuff, so the next block gets a fresh start
for (int c = 0; c < channels; ++c) {
auto channelBands = bandsForChannel(c);
for (int b = 0; b < bands; ++b) {
channelBands[b].prevInput = channelBands[b].output = 0;
}
}
}
// Process a complete audio buffer all in one go
template<class Inputs, class Outputs>
bool exact(Inputs &&inputs, int inputSamples, Outputs &&outputs, int outputSamples) {
Sample playbackRate = inputSamples/Sample(outputSamples);
auto seekLength = outputSeekLength(playbackRate);
if (inputSamples < seekLength) {
// to short for this - zero the output just to be polite
for (int c = 0; c < channels; ++c) {
auto &&channel = outputs[c];
for (int i = 0; i < outputSamples; ++i) {
channel[i] = 0;
}
}
return false;
}
outputSeek(inputs, seekLength);
int outputIndex = outputSamples - seekLength/playbackRate;
OffsetIO<Inputs> offsetInput{inputs, seekLength};
process(offsetInput, inputSamples - seekLength, outputs, outputIndex);
OffsetIO<Outputs> offsetOutput{outputs, outputIndex};
flush(offsetOutput, outputSamples - outputIndex, playbackRate);
return true;
}
private:
bool _splitComputation = false;
struct {
size_t samplesSinceLast = std::numeric_limits<size_t>::max();
size_t steps = 0;
size_t step = 0;
bool newSpectrum = false;
bool reanalysePrev = false;
bool mappedFrequencies = false;
bool processFormants = false;
Sample timeFactor;
} blockProcess;
using Complex = std::complex<Sample>;
static constexpr Sample noiseFloor{1e-15};
static constexpr Sample maxCleanStretch{2}; // time-stretch ratio before we start randomising phases
size_t silenceCounter = 0;
bool silenceFirst = true;
Sample freqMultiplier = 1, freqTonalityLimit = 0.5;
std::function<Sample(Sample)> customFreqMap = nullptr;
bool formantCompensation = false; // compensate for pitch/freq change
Sample formantMultiplier = 1, invFormantMultiplier = 1;
using STFT = signalsmith::linear::DynamicSTFT<Sample, false, true>;
STFT stft;
typename STFT::Input stashedInput;
typename STFT::Output stashedOutput;
std::vector<Sample> tmpProcessBuffer, tmpPreRollBuffer;
int channels = 0, bands = 0;
int prevInputOffset = -1;
bool didSeek = false;
Sample seekTimeFactor = 1;
Sample bandToFreq(Sample b) const {
return stft.binToFreq(b);
}
Sample freqToBand(Sample f) const {
return stft.freqToBin(f);
}
struct Band {
Complex input, prevInput{0};
Complex output{0};
Sample inputEnergy;
};
std::vector<Band> channelBands;
Band * bandsForChannel(int channel) {
return channelBands.data() + channel*bands;
}
template<Complex Band::*member>
Complex getBand(int channel, int index) {
if (index < 0 || index >= bands) return 0;
return channelBands[index + channel*bands].*member;
}
template<Complex Band::*member>
Complex getFractional(int channel, int lowIndex, Sample fractional) {
Complex low = getBand<member>(channel, lowIndex);
Complex high = getBand<member>(channel, lowIndex + 1);
return low + (high - low)*fractional;
}
template<Complex Band::*member>
Complex getFractional(int channel, Sample inputIndex) {
int lowIndex = std::floor(inputIndex);
Sample fracIndex = inputIndex - lowIndex;
return getFractional<member>(channel, lowIndex, fracIndex);
}
template<Sample Band::*member>
Sample getBand(int channel, int index) {
if (index < 0 || index >= bands) return 0;
return channelBands[index + channel*bands].*member;
}
template<Sample Band::*member>
Sample getFractional(int channel, int lowIndex, Sample fractional) {
Sample low = getBand<member>(channel, lowIndex);
Sample high = getBand<member>(channel, lowIndex + 1);
return low + (high - low)*fractional;
}
template<Sample Band::*member>
Sample getFractional(int channel, Sample inputIndex) {
int lowIndex = std::floor(inputIndex);
Sample fracIndex = inputIndex - lowIndex;
return getFractional<member>(channel, lowIndex, fracIndex);
}
struct Peak {
Sample input, output;
};
std::vector<Peak> peaks;
std::vector<Sample> energy, smoothedEnergy;
struct PitchMapPoint {
Sample inputBin, freqGrad;
};
std::vector<PitchMapPoint> outputMap;
struct Prediction {
Sample energy = 0;
Complex input;
Complex makeOutput(Complex phase) {
Sample phaseNorm = _impl::norm(phase);
if (phaseNorm <= noiseFloor) {
phase = input; // prediction is too weak, fall back to the input
phaseNorm = _impl::norm(input) + noiseFloor;
}
return phase*std::sqrt(energy/phaseNorm);
}
};
std::vector<Prediction> channelPredictions;
Prediction * predictionsForChannel(int c) {
return channelPredictions.data() + c*bands;
}
// If RandomEngine=void, use std::default_random_engine;
using RandomEngineImpl = typename std::conditional<
std::is_void<RandomEngine>::value,
std::default_random_engine,
RandomEngine
>::type;
RandomEngineImpl randomEngine;
size_t processSpectrumSteps = 0;
static constexpr size_t splitMainPrediction = 8; // it's just heavy, since we're blending up to 4 different phase predictions
void updateProcessSpectrumSteps() {
processSpectrumSteps = 0;
if (blockProcess.newSpectrum) processSpectrumSteps += channels;
if (blockProcess.mappedFrequencies) {
processSpectrumSteps += smoothEnergySteps;
processSpectrumSteps += 1; // findPeaks
}
processSpectrumSteps += 1; // updating the output map
processSpectrumSteps += channels; // preliminary phase-vocoder prediction
processSpectrumSteps += splitMainPrediction;
if (blockProcess.newSpectrum) processSpectrumSteps += 1; // .input -> .prevInput
if (blockProcess.processFormants) processSpectrumSteps += 3;
}
void processSpectrum(size_t step) {
Sample timeFactor = blockProcess.timeFactor;
Sample smoothingBins = Sample(stft.fftSamples())/stft.defaultInterval();
int longVerticalStep = std::round(smoothingBins);
timeFactor = std::max<Sample>(timeFactor, 1/maxCleanStretch);
bool randomTimeFactor = (timeFactor > maxCleanStretch);
std::uniform_real_distribution<Sample> timeFactorDist(maxCleanStretch*2*randomTimeFactor - timeFactor, timeFactor);
if (blockProcess.newSpectrum) {
if (step < size_t(channels)) {
int channel = int(step);
auto bins = bandsForChannel(channel);
Complex rot = std::polar(Sample(1), bandToFreq(0)*stft.defaultInterval()*Sample(2*M_PI));
Sample freqStep = bandToFreq(1) - bandToFreq(0);
Complex rotStep = std::polar(Sample(1), freqStep*stft.defaultInterval()*Sample(2*M_PI));
for (int b = 0; b < bands; ++b) {
auto &bin = bins[b];
bin.output = _impl::mul(bin.output, rot);
bin.prevInput = _impl::mul(bin.prevInput, rot);
rot = _impl::mul(rot, rotStep);
}
return;
}
step -= channels;
}
if (blockProcess.mappedFrequencies) {
if (step < smoothEnergySteps) {
smoothEnergy(step, smoothingBins);
return;
}
step -= smoothEnergySteps;
if (step-- == 0) {
findPeaks();
return;
}
}
if (step-- == 0) {
if (blockProcess.mappedFrequencies) {
updateOutputMap();
} else { // we're not pitch-shifting, so no need to find peaks etc.
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
for (int b = 0; b < bands; ++b) {
bins[b].inputEnergy = _impl::norm(bins[b].input);
}
}
for (int b = 0; b < bands; ++b) {
outputMap[b] = {Sample(b), 1};
}
}
return;
}
if (blockProcess.processFormants) {
if (step < 3) {
updateFormants(step);
return;
}
step -= 3;
}
// Preliminary output prediction from phase-vocoder
if (step < size_t(channels)) {
int c = int(step);
Band *bins = bandsForChannel(c);
auto *predictions = predictionsForChannel(c);
for (int b = 0; b < bands; ++b) {
auto mapPoint = outputMap[b];
int lowIndex = std::floor(mapPoint.inputBin);
Sample fracIndex = mapPoint.inputBin - lowIndex;
Prediction &prediction = predictions[b];
Sample prevEnergy = prediction.energy;
prediction.energy = getFractional<&Band::inputEnergy>(c, lowIndex, fracIndex);
prediction.energy *= std::max<Sample>(0, mapPoint.freqGrad); // scale the energy according to local stretch factor
prediction.input = getFractional<&Band::input>(c, lowIndex, fracIndex);
auto &outputBin = bins[b];
Complex prevInput = getFractional<&Band::prevInput>(c, lowIndex, fracIndex);
Complex freqTwist = _impl::mul<true>(prediction.input, prevInput);
Complex phase = _impl::mul(outputBin.output, freqTwist);
outputBin.output = phase/(std::max(prevEnergy, prediction.energy) + noiseFloor);
}
return;
}
step -= channels;
if (step < splitMainPrediction) {
// Re-predict using phase differences between frequencies
size_t chunk = step;
int startB = int(bands*chunk/splitMainPrediction);
int endB = int(bands*(chunk + 1)/splitMainPrediction);
for (int b = startB; b < endB; ++b) {
// Find maximum-energy channel and calculate that
int maxChannel = 0;
Sample maxEnergy = predictionsForChannel(0)[b].energy;
for (int c = 1; c < channels; ++c) {
Sample e = predictionsForChannel(c)[b].energy;
if (e > maxEnergy) {
maxChannel = c;
maxEnergy = e;
}
}
auto *predictions = predictionsForChannel(maxChannel);
auto &prediction = predictions[b];
auto *bins = bandsForChannel(maxChannel);
auto &outputBin = bins[b];
Complex phase = 0;
auto mapPoint = outputMap[b];
// Upwards vertical steps
if (b > 0) {
Sample binTimeFactor = randomTimeFactor ? timeFactorDist(randomEngine) : timeFactor;
Complex downInput = getFractional<&Band::input>(maxChannel, mapPoint.inputBin - binTimeFactor);
Complex shortVerticalTwist = _impl::mul<true>(prediction.input, downInput);
auto &downBin = bins[b - 1];
phase += _impl::mul(downBin.output, shortVerticalTwist);
if (b >= longVerticalStep) {
Complex longDownInput = getFractional<&Band::input>(maxChannel, mapPoint.inputBin - longVerticalStep*binTimeFactor);
Complex longVerticalTwist = _impl::mul<true>(prediction.input, longDownInput);
auto &longDownBin = bins[b - longVerticalStep];
phase += _impl::mul(longDownBin.output, longVerticalTwist);
}
}
// Downwards vertical steps
if (b < bands - 1) {
auto &upPrediction = predictions[b + 1];
auto &upMapPoint = outputMap[b + 1];
Sample binTimeFactor = randomTimeFactor ? timeFactorDist(randomEngine) : timeFactor;
Complex downInput = getFractional<&Band::input>(maxChannel, upMapPoint.inputBin - binTimeFactor);
Complex shortVerticalTwist = _impl::mul<true>(upPrediction.input, downInput);
auto &upBin = bins[b + 1];
phase += _impl::mul<true>(upBin.output, shortVerticalTwist);
if (b < bands - longVerticalStep) {
auto &longUpPrediction = predictions[b + longVerticalStep];
auto &longUpMapPoint = outputMap[b + longVerticalStep];
Complex longDownInput = getFractional<&Band::input>(maxChannel, longUpMapPoint.inputBin - longVerticalStep*binTimeFactor);
Complex longVerticalTwist = _impl::mul<true>(longUpPrediction.input, longDownInput);
auto &longUpBin = bins[b + longVerticalStep];
phase += _impl::mul<true>(longUpBin.output, longVerticalTwist);
}
}
outputBin.output = prediction.makeOutput(phase);
// All other bins are locked in phase
for (int c = 0; c < channels; ++c) {
if (c != maxChannel) {
auto &channelBin = bandsForChannel(c)[b];
auto &channelPrediction = predictionsForChannel(c)[b];
Complex channelTwist = _impl::mul<true>(channelPrediction.input, prediction.input);
Complex channelPhase = _impl::mul(outputBin.output, channelTwist);
channelBin.output = channelPrediction.makeOutput(channelPhase);
}
}
}
return;
}
step -= splitMainPrediction;
if (blockProcess.newSpectrum) {
if (step-- == 0) {
for (auto &bin : channelBands) {
bin.prevInput = bin.input;
}
}
}
}
// Produces smoothed energy across all channels
static constexpr size_t smoothEnergySteps = 3;
Sample smoothEnergyState = 0;
void smoothEnergy(size_t step, Sample smoothingBins) {
Sample smoothingSlew = 1/(1 + smoothingBins*Sample(0.5));
if (step-- == 0) {
for (auto &e : energy) e = 0;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
for (int b = 0; b < bands; ++b) {
Sample e = _impl::norm(bins[b].input);
bins[b].inputEnergy = e; // Used for interpolating prediction energy
energy[b] += e;
}
}
for (int b = 0; b < bands; ++b) {
smoothedEnergy[b] = energy[b];
}
smoothEnergyState = 0;
return;
}
// The two other steps are repeated smoothing passes, down and up
Sample e = smoothEnergyState;
for (int b = bands - 1; b >= 0; --b) {
e += (smoothedEnergy[b] - e)*smoothingSlew;
smoothedEnergy[b] = e;
}
for (int b = 0; b < bands; ++b) {
e += (smoothedEnergy[b] - e)*smoothingSlew;
smoothedEnergy[b] = e;
}
smoothEnergyState = e;
}
Sample mapFreq(Sample freq) const {
if (customFreqMap) return customFreqMap(freq);
if (freq > freqTonalityLimit) {
return freq + (freqMultiplier - 1)*freqTonalityLimit;
}
return freq*freqMultiplier;
}
// Identifies spectral peaks using energy across all channels
void findPeaks() {
peaks.resize(0);
int start = 0;
while (start < bands) {
if (energy[start] > smoothedEnergy[start]) {
int end = start;
Sample bandSum = 0, energySum = 0;
while (end < bands && energy[end] > smoothedEnergy[end]) {
bandSum += end*energy[end];
energySum += energy[end];
++end;
}
Sample avgBand = bandSum/energySum;
Sample avgFreq = bandToFreq(avgBand);
peaks.emplace_back(Peak{avgBand, freqToBand(mapFreq(avgFreq))});
start = end;
}
++start;
}
}
void updateOutputMap() {
if (peaks.empty()) {
for (int b = 0; b < bands; ++b) {
outputMap[b] = {Sample(b), 1};
}
return;
}
Sample bottomOffset = peaks[0].input - peaks[0].output;
for (int b = 0; b < std::min<int>(bands, std::ceil(peaks[0].output)); ++b) {
outputMap[b] = {b + bottomOffset, 1};
}
// Interpolate between points
for (size_t p = 1; p < peaks.size(); ++p) {
const Peak &prev = peaks[p - 1], &next = peaks[p];
Sample rangeScale = 1/(next.output - prev.output);
Sample outOffset = prev.input - prev.output;
Sample outScale = next.input - next.output - prev.input + prev.output;
Sample gradScale = outScale*rangeScale;
int startBin = std::max<int>(0, std::ceil(prev.output));
int endBin = std::min<int>(bands, std::ceil(next.output));
for (int b = startBin; b < endBin; ++b) {
Sample r = (b - prev.output)*rangeScale;
Sample h = r*r*(3 - 2*r);
Sample outB = b + outOffset + h*outScale;
Sample gradH = 6*r*(1 - r);
Sample gradB = 1 + gradH*gradScale;
outputMap[b] = {outB, gradB};
}
}
Sample topOffset = peaks.back().input - peaks.back().output;
for (int b = std::max<int>(0, peaks.back().output); b < bands; ++b) {
outputMap[b] = {b + topOffset, 1};
}
}
// If we mapped formants the same way as mapFreq(), this would be the inverse
Sample invMapFormant(Sample freq) const {
if (freq*invFormantMultiplier > freqTonalityLimit) {
return freq + (1 - formantMultiplier)*freqTonalityLimit;
}
return freq*invFormantMultiplier;
}
Sample freqEstimateWeighted = 0;
Sample freqEstimateWeight = 0;
Sample estimateFrequency() {
// 3 highest peaks in the input
std::array<int, 3> peakIndices{0, 0, 0};
for (int b = 1; b < bands - 1; ++b) {
Sample e = formantMetric[b];
// local maxima only
if (e < formantMetric[b - 1] || e <= formantMetric[b + 1]) continue;
if (e > formantMetric[peakIndices[0]]) {
if (e > formantMetric[peakIndices[1]]) {
if (e > formantMetric[peakIndices[2]]) {
peakIndices = {peakIndices[1], peakIndices[2], b};
} else {
peakIndices = {peakIndices[1], b, peakIndices[2]};
}
} else {
peakIndices[0] = b;
}
}
}
// VERY rough pitch estimation
int peakEstimate = peakIndices[2];
if (formantMetric[peakIndices[1]] > formantMetric[peakIndices[2]]*0.1) {
int diff = std::abs(peakEstimate - peakIndices[1]);
if (diff > peakEstimate/8 && diff < peakEstimate*7/8) peakEstimate = peakEstimate%diff;
if (formantMetric[peakIndices[0]] > formantMetric[peakIndices[2]]*0.01) {
int diff = std::abs(peakEstimate - peakIndices[0]);
if (diff > peakEstimate/8 && diff < peakEstimate*7/8) peakEstimate = peakEstimate%diff;
}
}
Sample weight = formantMetric[peakIndices[2]];
// Smooth it out a bit
freqEstimateWeighted += (peakEstimate*weight - freqEstimateWeighted)*0.25;
freqEstimateWeight += (weight - freqEstimateWeight)*0.25;
return freqEstimateWeighted/(freqEstimateWeight + Sample(1e-30));
}
Sample freqEstimate;
std::vector<Sample> formantMetric;
Sample formantBaseFreq = 0;
void updateFormants(size_t step) {
if (step-- == 0) {
for (auto &e : formantMetric) e = 0;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
for (int b = 0; b < bands; ++b) {
formantMetric[b] += bins[b].inputEnergy;
}
}
freqEstimate = freqToBand(formantBaseFreq);
if (formantBaseFreq <= 0) freqEstimate = estimateFrequency();
} else if (step-- == 0) {
Sample decay = 1 - 1/(freqEstimate*0.5 + 1);
Sample e = 0;
for (size_t repeat = 0; repeat < 2; ++repeat) {
for (int b = bands - 1; b >= 0; --b) {
e = std::max(formantMetric[b], e*decay);
formantMetric[b] = e;
}
for (int b = 0; b < bands; ++b) {
e = std::max(formantMetric[b], e*decay);
formantMetric[b] = e;
}
}
decay = 1/decay;
for (size_t repeat = 0; repeat < 2; ++repeat) {
for (int b = bands - 1; b >= 0; --b) {
e = std::min(formantMetric[b], e*decay);
formantMetric[b] = e;
}
for (int b = 0; b < bands; ++b) {
e = std::min(formantMetric[b], e*decay);
formantMetric[b] = e;
}
}
} else {
auto getFormant = [&](Sample band) -> Sample {
if (band < 0) return 0;
band = std::min<Sample>(band, bands);
int floorBand = std::floor(band);
Sample fracBand = band - floorBand;
Sample low = formantMetric[floorBand], high = formantMetric[floorBand + 1];
return low + (high - low)*fracBand;
};
for (int b = 0; b < bands; ++b) {
Sample inputF = bandToFreq(b);
Sample outputF = formantCompensation ? mapFreq(inputF) : inputF;
outputF = invMapFormant(outputF);
Sample inputE = formantMetric[b];
Sample targetE = getFormant(freqToBand(outputF));
Sample formantRatio = targetE/(inputE + Sample(1e-30));
Sample energyRatio = formantRatio;
for (int c = 0; c < channels; ++c) {
Band *bins = bandsForChannel(c);
// This is what's used to decide the output energy, so this affects the output
bins[b].inputEnergy *= energyRatio;
}
}
}
}
// Proxy class to avoid copying/allocating anything
template<class Io>
struct OffsetIO {
Io &io;
int offset;
struct Channel {
Io &io;
int channel;
int offset;
auto operator[](int i) -> decltype(io[0][0]) {
return io[channel][i + offset];
}
};
Channel operator[](int c) {
return {io, c, offset};
}
};
};
}} // namespace
#endif // include guard